Canonical Weierstrass Representation of Minimal and Maximal Surfaces in the Three-dimensional Minkowski Space
نویسنده
چکیده
We prove that any minimal (maximal) strongly regular surface in the threedimensional Minkowski space locally admits canonical principal parameters. Using this result, we find a canonical representation of minimal strongly regular time-like surfaces, which makes more precise the Weierstrass representation and shows more precisely the correspondence between these surfaces and holomorphic functions (in the Gauss plane). We also find a canonical representation of maximal strongly regular space-like surfaces, which makes more precise the Weierstrass representation and shows more precisely the correspondence between these surfaces and holomorphic functions (in the Lorentz plane). This allows us to describe locally the solutions of the corresponding natural partial differential equations.
منابع مشابه
Determining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form
A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...
متن کاملA Weierstrass representation for linear Weingarten spacelike surfaces of maximal type in the Lorentz–Minkowski space
In this work we extend the Weierstrass representation for maximal spacelike surfaces in the 3-dimensional Lorentz–Minkowski space to spacelike surfaces whose mean curvature is proportional to its Gaussian curvature (linear Weingarten surfaces of maximal type). We use this representation in order to study the Gaussian curvature and the Gauss map of such surfaces when the immersion is complete, p...
متن کامل$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کاملWeierstrass Representation for Timelike Minimal Surfaces in Minkowski 3-space
Using techniques of integrable systems, we study a Weierstraß representation formula for timelike surfaces with prescribed mean curvature in Minkowski 3-space. It is shown that timelike minimal surfaces are obtained by integrating a pair of Lorentz holomorphic and Lorentz antiholomorphic null curves in Minkowski 3-space. The relationship between timelike minimal surfaces and bosonic Nambu-Goto ...
متن کاملConstant Mean Curvature Surfaces in Euclidean and Minkowski 3-spaces
Spacelike constant mean curvature surfaces in Minkowski 3-space L have an infinite dimensional generalized Weierstrass representation. This is analogous to that given by Dorfmeister, Pedit and Wu for constant mean curvature surfaces in Euclidean space, replacing the group SU(2) with SU(1, 1). The non-compactness of the latter group, however, means that the Iwasawa decomposition of the loop grou...
متن کامل